With a known functional relationship between the $X_{N M}$ and $U_{L K}$, one has the following linkage equations between the two-dimensional force and strain tensors:

$$
\begin{align*}
& x_{l K}=\int_{b_{-}}^{b_{+}^{+}}\left(\partial U_{N M} / \partial u_{l K}\right) X_{N M^{\prime} B_{1} B_{2} d t_{3}} \\
& x_{33}=\int_{b_{-}}^{b_{+}}\left(\partial U_{N M} / \partial u_{33}\right) X_{N M} B_{1} B_{2} d t_{3} \tag{4.9}\\
& z_{l K}=\int_{b_{-}}^{b_{+}}\left(\partial U_{N M} / \partial w_{l K}\right) X_{N M} B_{1} B_{2} d t_{3} .
\end{align*}
$$

Equations (4.1)-(4.9) form a closed system for the unknown functions $u_{N}, v_{n}, u_{33}, u_{n M}$, $W_{n M}, X_{N M}, z_{n M}$ and their first-order partial derivatives. The bending tensor $v_{n M}$ plays an auxiliary role in this system of abbreviated denotation for differential expression (4.2).

When the tw~-dimensional system of (4.1)-(4.9) has been solved, the three-dimensional parameters of the state of stress and strain in the shell are determined from the scheme presented in Sec. 3.

LITERATURE CITED

1. L. Yı. Ainola, "A nonlinear theory of Timoshenko type for elastic shells," Izv. Akad. Nauk ESSR, Ser. Fiz.-Mat. Tekh. Nauk, 14, No. 3 (1965).
2. K. Z. Galimov, "A nonlinear theory of thin shells of Timoshenko type," in: Researches on the Theory of Plates and Shells [in Russian], Issue 11, Kazan' (1975).
3. L. I. Shkutin, "Nonlinear models for deformable media containing moments," Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1930).
4. L. I. Shkutin, "A non1inear model for a shell with undeformable transverse fibers," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1982).
5. N. A. Fedorova and L. I. Shkutin, "The asymptotic behavior in an axially symmetrical elasticity problem for an anisotropic cylindrical shell," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1981).

EXISTENCE OF SOLUTIONS IN IDEAL HENCKE PLASTICTTY
A. M. Khludnev

UDC $539.214+539.374+517.9$

The existence of a weak solution in the theory of ideal Hencke plasticity is obtained only in the particular case of the Mises flow condition and under the assumption of isotropy of the material [1]. The strain vector is here found from a space conjugate to $L^{\infty}(\Omega)$. The existence of a solution for an arbitrary flow condition and without the assumption of isotropy is proved in this paper. The displacement vector belongs to the space $L^{3 / 2}(\Omega)$.

The governing equations of the plasticity theory under consideration yield a representation of the total strains in the form of a sum of elastic and plastic components

$$
\begin{equation*}
\varepsilon_{i j}(u)=c_{i j k l} \sigma_{k l}+\xi_{i j}, i, j=1,2,3, \tag{1}
\end{equation*}
$$

where the stresses do not exceed the yield point $\Phi(\sigma) \leqslant 0$, while the plastic strains $\xi_{i j}$ satisfy the inequality [1-3]

$$
\begin{equation*}
\xi_{i j}\left(\tau_{i j}-\sigma_{i j}\right) \leqslant 0 \forall \tau, \Phi(\tau) \leqslant 0 . \tag{2}
\end{equation*}
$$

The equilibrium equations are satisfied in the domain $\Omega \subset R^{3}$

$$
\begin{equation*}
-\sigma_{i j, j}=t_{i}, i=1,2,3 \tag{3}
\end{equation*}
$$

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 174-177, January-February, 1984. Original article submitted November 1, 1982.

On the boundary of the domain I the condition

$$
\begin{equation*}
u=0 \tag{4}
\end{equation*}
$$

is valid. Here f_{i} are given mass forces, and the function Φ describes the flow condition. It is assumed that Φ is continuous, convex, and the set $\tilde{K}=\left\{\lambda \in R^{6} \mid \Phi(\lambda) \leqslant 0\right\}$ contains zero as an inner point. The boundary Γ is considered smooth. All the quantities with two subscripts are symmetric $\sigma=\left\{\sigma_{i j}\right\}, \varepsilon_{i j}(u)=(1 / 2)\left(u_{i, j}+u_{j, i}\right), u=\left(u_{i}, u_{2}, u_{3}\right), c_{i j k l} \in L^{\infty}(\Omega), \lambda=\left\{\lambda_{i j}\right\}$, the tensor $c_{i j k} \mathcal{L}$ possesses the usual symmetry and positive-definiteness properties; summation is assumed to be over repeated subscripts. Also let $K=\left\{\sigma \in L^{2}(\Omega) \mid \sigma(x) \in \widetilde{K}\right.$ almost everywhere in $\left.\Omega\right\}$. The follow result holds.

THEOREM. Let $f_{i} \in L^{3}(\Omega), i=1,2,3$ and let a solution σ^{0} of the system (3) exist such that for a certain constant $\delta>0$ the inclusion $(1+\delta) \sigma^{0} \in K$ will be valid. Then there are functions σ and u satisfying (3) where

$$
\begin{gather*}
\sigma \in K: \quad C(\sigma, \tau-\sigma)+\int_{\Omega} u_{i}\left(\tau_{i j, j}-\sigma_{i j, j}\right) d x \geqslant 0 \cdot \forall \tau \in K \cap V, \tag{5}\\
\sigma_{i j, j} \in L^{3}(\Omega), \quad u \in L^{3 / 2}(\Omega) .
\end{gather*}
$$

Here

$$
C(\sigma, \tau)=\int_{\Omega} c_{i j k l} \sigma_{k l} \tau_{i j} d x, \quad V=\left\{\sigma \in L^{2}(\Omega) \mid \sigma_{i j, j} \in L^{3}(\Omega)\right\} .
$$

The inequality (5) is the relations (1), (2), (4) written in a form corresponding to the existing regularity of the solution.

Proof. The scheme of the discussion is the following. First we examine the auxiliary problem with a penalty, and by using reciprocity methods we prove the existence of approximate solutions. We then obtain a priori estimates that are uniform in the penalty parameter $\varepsilon>0$, and we then pass to the limit.

Let π be the projection operator in R^{6} with the customary Euclidean norm in the set \tilde{K}. We define a functional in the space $\mathrm{L}^{2}(\Omega)(\varepsilon>0$ is fixed)

$$
H(\sigma)=\frac{1}{2} C(\sigma, \sigma)+P(\sigma), \quad P(\sigma)=\frac{1}{2 \varepsilon}\|\sigma-\pi \sigma\|_{2}^{2}
$$

and the closed convex sets

$$
A=\left\{\sigma \in L^{2}(\Omega) \mid \sigma_{i j, j}=f_{i}, i=1,2,3\right\}, A_{0}=\left\{\sigma \in L^{2}(\Omega) \mid \sigma_{i j, j}=0, i=1,2,3\right\}
$$

Using the first Korn inequality in $H^{\frac{1}{0}}(\Omega)$, it can be proved that the set

$$
W=\left\{e_{i j} \mid e_{i j} \in L^{2}(\Omega), \quad e_{i j}=\varepsilon_{i j}(u), \quad u=\left(u_{1}, u_{2}, u_{3}\right) \in H_{0}^{1}(\Omega)\right\}
$$

is closed in $\mathrm{L}^{2}(\Omega)$.
Furthermore, let us set

$$
\begin{aligned}
& F(e)=\left\{\begin{array}{lr}
-\left\langle f_{i}, u_{i}\right\rangle, & \text { if } \quad e_{i j} \in W, \\
+\infty & \text { otherwise, }
\end{array} \quad e=\left\{e_{i j}\right\},\right. \\
& G(e)=\sup _{\tau \in L^{2}(\Omega)}\{\langle\tau, e\rangle-H(\tau)\}, \quad \tau=\left\{\tau_{i j}\right\},
\end{aligned}
$$

where $\left\langle\cdot, \cdot>\right.$ is the scalar product in $L^{2}(\Omega)$. Because of the closedness of W the functional F is weakly semicontinuous from below.

Let us consider the problem

$$
\begin{equation*}
\inf _{e \in L^{2}(\Omega)}\{G(e)+F(e)\}=\inf _{u \in H_{0}^{1}(\Omega)}\left\{\sup _{\tau \subseteq L^{2}(\Omega)}[\langle\tau, \varepsilon(u)\rangle-H(\tau)]-\left\langle f_{i}, u_{i}\right\rangle\right\} . \tag{6}
\end{equation*}
$$

We prove that this problem has a solution. Indeed, we have at the point $\tau=\bar{\tau}$ where the exact upper bound is reached

$$
\left\langle H^{\prime}(\bar{\tau}), \sigma\right\rangle-\langle\varepsilon(u), \sigma\rangle=0 \quad \forall \sigma \in L^{2}(\Omega) .
$$

$$
\begin{equation*}
\varepsilon_{i j}(u)=c_{i j k l} \bar{\tau}_{k l}+P^{\prime}(\bar{\tau})_{i j}, \quad P^{\prime}(\bar{\tau})_{i j}=(1 / \varepsilon)(\bar{\tau}-\pi \bar{\tau})_{i j} \tag{7}
\end{equation*}
$$

Here and above the prime denotes the derivatives of the appropriate functionals. We substitute the value obtained $\varepsilon_{i j}(u)$ into the square bracket in (6) for $\tau=\bar{\tau}$. We obtain that the value of this bracket equals $(1 / 2) C(\bar{\tau}, \bar{\tau})-P(\bar{\tau})+\left\langle P^{\prime}(\bar{\tau}), \bar{\tau}\right\rangle$. However, it follows from (7) [c is independent of $u, \bar{\tau},\|\cdot\|_{p}$ is the norm in $L P(\Omega)$]

$$
\|u\|_{H_{0}^{1}(\Omega)} \leqslant c\left(\|\bar{\tau}\|_{2}+\left\|P^{\prime}(\bar{\tau})\right\|_{2}\right) .
$$

Moreover, from the convexity of the functional P we obtain that $P(\bar{\tau}) \leqslant\left\langle P^{\prime}(\bar{\tau})\right.$, $\left.\bar{\tau}\right\rangle$. Therefore, the value of the braces in (6) tends to $+\infty$ for $\|u\|_{H_{0}^{1}(\Omega)} \rightarrow+\infty \quad$ [we emphasize that ε is still fixed so that $\left.\left\|P^{\prime}(\bar{\tau})\right\|_{2} \leqslant c\|\bar{\tau}\|_{2}\right]$. The coercivity of the functional (6) is set. Hence, the existence of the solution $u=u^{\varepsilon} \in H_{0}^{1}(\Omega)$ follows from the weak semicontinuity from below.

We now construct the problem conjugate to (6). We have $G^{*}(\tau)=H(\tau)$ and

$$
F^{*}(-\tau)=\sup _{e \in L^{2}(\Omega)}\{\langle\tau, e\rangle-F(e)\}=\sup _{u \equiv H_{0}^{1}(\Omega)}\left\{\langle\tau, \varepsilon(u)\rangle+\left\langle f_{i}, u_{i}\right\rangle\right\}=\psi_{A}(\tau) .
$$

Here $\psi_{A}(\tau)$ is the display function of the set A, i.e., a function equal to zero in the set A and $+\infty$ outside. Therefore, the following [4]

$$
\begin{equation*}
\inf _{\tau \in L^{2}(\Omega)}\left\{G^{*}(\tau)+F^{*}(-\tau)\right\}=\inf _{\tau \in A} H(\tau) \tag{8}
\end{equation*}
$$

will be a problem reciprocal to (6) relative to the perturbation $\Lambda(e, q)=G(e)+F(e-q)$. This problem has a solution which is characterized by the inequality $\sigma=\sigma^{\varepsilon} \in A:\left\langle H^{\prime}\left(\sigma^{\varepsilon}\right), \tau-\right.$ $\left.\sigma^{\varepsilon}\right\rangle \geqslant 0 \forall \tau \in A$. We here substitute $\tau=\sigma^{\varepsilon} \pm \tau_{0}, \tau_{0} \in A_{0}$. We obtain

$$
\begin{equation*}
\left\langle H^{\prime}\left(\sigma^{\varepsilon}\right), \tau_{0}\right\rangle=0 \quad \forall \tau_{0} \in A_{0} \tag{9}
\end{equation*}
$$

The identity (9) will play a substantial part in obtaining a priori estimates of the solution.

The solutions $\sigma^{\varepsilon} \in L^{2}(\Omega)$ and $u^{\varepsilon} \in H_{0}^{1}(\Omega)$ of the conjugate problems (6) and (8) are related to the extremal relationships [4]

$$
G\left(\varepsilon\left(u^{\varepsilon}\right)\right)+G^{*}\left(\sigma^{\varepsilon}\right)=\left\langle\varepsilon\left(u^{\varepsilon}\right), \sigma^{\varepsilon}\right\rangle .
$$

Substituting the values of G and G^{*}, we find

$$
H\left(\sigma^{\varepsilon}\right)-\left\langle\mathrm{\varepsilon}\left(u^{\varepsilon}\right), \sigma^{\varepsilon}\right\rangle \leqslant H(\tau)-\left\langle\varepsilon\left(u^{\varepsilon}\right), \tau\right\rangle \forall \tau \in L^{2}(\Omega) .
$$

It hence follows that

$$
\begin{equation*}
\varepsilon_{i j}\left(u^{\varepsilon}\right)=c_{i j k l} \sigma_{k l}^{\varepsilon}+P^{\prime}\left(\sigma^{\varepsilon}\right)_{i j} \tag{10}
\end{equation*}
$$

We now obtain the a priori estimates of the solutions on the basis of (9) and (10). We substitute as τ_{0} in the identity (9) the quantity $\bar{\sigma}=\sigma \varepsilon-\sigma^{0}, \sigma^{0}$ is the solution of (3). We will have

$$
C\left(\bar{\sigma}^{\varepsilon}, \bar{\sigma}^{\varepsilon}\right)+\left\langle P^{\prime}\left(\sigma^{\varepsilon}\right), \bar{\sigma}^{\varepsilon}\right\rangle=-C\left(\sigma^{0}, \bar{\sigma}^{\varepsilon}\right)
$$

Since $\sigma^{0} \in K$, then $\left\langle P^{\prime}\left(\sigma^{\varepsilon}\right), \bar{\sigma}^{\varepsilon}\right\rangle \geqslant 0$, and this means that from this relationship there follows

$$
\begin{equation*}
\left\|\bar{\sigma}^{\boldsymbol{e}}\right\|_{2} \leqslant c,\left\langle\boldsymbol{P}^{\prime}\left(\sigma^{\varepsilon}\right), \bar{\sigma}^{\mathrm{\sigma}}\right\rangle \leqslant c \tag{11}
\end{equation*}
$$

The constants c are here independent of ε.
Furthermore, it follows from the conditions of the theorem that $(1+8) \sigma^{0} \in K$. Hence, there is a constant δ_{0} dependent on δ and \tilde{K} for which dist $\left(\sigma^{\circ}(x), C \tilde{K}\right) \geqslant \delta_{0}$; C \tilde{K} is the supplement to the set \tilde{K}. We assume that for $x \in \Omega$ the imbedding $\sigma^{\varepsilon}(x)=\sigma^{0}(x)+\bar{\sigma}^{\varepsilon}(x) \in C \widetilde{K}$ is valid. Then the hyperplane is $\left\{\xi \in R^{6} \mid[\xi, l(x)]=b\right\}$, where b is a certain number while

$$
\begin{equation*}
l(x)=\left.\left.P^{\prime}\left(\sigma^{8}\right)(x)\right|^{\prime}\left(\sigma^{\varepsilon}\right)(x)\right|^{-1} \tag{12}
\end{equation*}
$$

separates the sets $\sigma^{\varepsilon}(x)$ and \tilde{K}. Here $[\cdot, \cdot]$ denotes the scalar product corresponding to the Euclidean norm. Since $\sigma^{2}(x) \in C \widetilde{K}, \sigma^{0}(x)+\delta_{0} l(x) \in \widetilde{K}, 0 \in \widetilde{K}$, then the following inequalities hold:

$$
\left[\sigma^{0}(x)+\bar{\sigma}^{\mathrm{e}}(x), l(x)\right] \geqslant b,\left[\sigma^{0}(x)+\delta_{0} l(x), l(x)\right] \leqslant b
$$

We hence obtain $\left[\bar{\sigma}^{\varepsilon}(x), l(x)\right] \geqslant \delta_{0}$. Consequently, by multiplying (12) scalarly by $\bar{\sigma}^{\varepsilon}$, we will have

$$
\left|P^{\prime}\left(\sigma^{\mathrm{e}}\right)(x)\right| \leqslant \delta_{0}^{-1}\left[P^{\prime}\left(\sigma^{\varepsilon}\right)(x), \bar{\sigma}^{\mathrm{E}}(x)\right] .
$$

This inequality is satisfied also in the case $\sigma^{\boldsymbol{\theta}}(x) \in \widetilde{K}$. Integrating it over the domain Ω and taking account of (11), we obtain

$$
\left\|P^{\prime}\left(\sigma^{\varepsilon}\right)\right\|_{i} \leqslant c
$$

with constant c independent of ε. By using this inequality, we obtain $\left\|\varepsilon\left(u^{\varepsilon}\right)\right\|_{1} \leqslant c$ from (10). It is proved in [5] that if $\Omega \subset R^{3}$ is a domain with regular boundaries and $\varphi=\left(\varphi_{1}, \varphi_{2}\right.$, $\left.\varphi_{3}\right) \in H_{0}^{\mathbf{1}}(\Omega)$, then there exists a constant $c>0$ independent of φ for which

$$
\|\varphi\|_{3 / 2} \leqslant c \sum_{i, j=1}^{3}\left\|\varepsilon_{i j}(\varphi)\right\|_{1} .
$$

Therefore, the estimate

$$
\begin{equation*}
\left\|u^{\varepsilon}\right\|_{3 / 2} \leqslant c \tag{13}
\end{equation*}
$$

with constant independent of ε is valid.
According to (11) and (13), it can be considered that there exists a subsequence denoted in the previous manner that possesses the property

$$
\begin{equation*}
\sigma^{8} \rightarrow \sigma \text { weakly in } L^{2}(\Omega), u^{\varepsilon} \rightarrow u \text { weakly in } L^{3 / 2}(\Omega) . \tag{14}
\end{equation*}
$$

We multiply (10) by $\tau_{i j}-\sigma_{i j}^{\boldsymbol{\varepsilon}}, \tau \in K \cap V$ and we obtain

$$
C\left(\sigma^{\boldsymbol{\varepsilon}}, \tau-\sigma^{\boldsymbol{\varepsilon}}\right)+\int_{\Omega} \mu_{i}^{\varepsilon}\left(\tau_{i j, j}-\mathrm{\sigma}_{i j, j}^{\mathbf{\varepsilon}}\right) d x \geqslant 0 .
$$

 here to the lower limit as $\varepsilon \rightarrow 0$, on the basis of (14). Consequently, we obtain the inequality (5). The imbedding $\sigma \in K$ is proved by standard reasoning [1]. The theorem is proved completely.

The author is grateful to V. M. Sadovskii for discussing the research.

LITERATURE CITED

1. G. Duveau and J.-L. Lions, Inequalities in Mechanics and Physics [Russian translation], Nauka, Moscow (1980).
2. H. Hencke, "On the theory of plastic deformations and the residual stresses they cause in a material," Theory of Plasticity [Russian translation], Inostr. Lit., Moscow (1948).
3. G. S. Pisarenko and N. S. Mozharovskii, Equations and Boundary-Value Problems of the Theories of Plasticity and Creep [in Russian], Naukova Dumka, Kiev (1981).
4. I. Ecklund and R. Temam, Convex Analysis and Variational Problems [Russian translation], Mir, Moscow (1979).
5. C. Johnson, "Existence theorems for plasticity problems," J. Math. Pures App1., 55, No. 4 (1976).
