
With a known functional relationship between the XNM and ULK , one has the following 
linkage equations between the two-dimensional force and strain tensors: 

b+ 
P 

xlK = J (OUNM/OUlK) XNMB1B~dt 3, 

b+ 

x33 = ~ (OUNM/Ou33) X NMB1B2dt3 ' ( 4 . 9 )  
b_ 
b+ 

ZlK : S (OUNM/OWLK) XNMB1B2dt3" 
b_ 

E q u a t i o n s  ( 4 . 1 ) - ( 4 . 9 )  f o r m  a c l o s e d  s y s t e m  f o r  t h e  unknown f u n c t i o n s  UN, Vn, u z z ,  UnM, 
WnM, XNM, ZnM and  t h e i r  f i r s t - o r d e r  p a r t i a l  d e r i v a t i v e s .  The b e n d i n g  t e n s o r  VnM p l a y s  an  
auxiliary role in this system of abbreviated denotation for differential expression (4.2). 

When the tw~--dimensional system of (4.1)-(4.9) has been solved, the three-dimensional 
parameters of the state of stress and strain in the shell are determined from the scheme 
presented i~ Sec~ 3. 
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EXISTENCE OF SOLUTIONS IN IDEAL HENCKE PLASTICITY 

A. M. Khludnev UDC 539.214+539.374+517.9 

The existence of a weak solution in the theory of ideal Hencke plasticity is obtained 
only in the particular case of the Mises flow condition and under the assumption of isotropy 
of the material [I]. The strain vector is here found from a space conjugate to L~(~). The 
existence of a solution for an arbitrary flow condition and without the assumption of iso- 

3 2 tropy is proved in this paper. The displacement vector belongs to the space L / (~). 

The governing equations of the plasticity theory under consideration yield a represen- 
tation of the total strains in the form of a sum of elastic and plastic components 

8ij(U) = Cijhlt~kl -~ ~ij' ~' ] = ~[' 2, 3, (1)  

where the stresses do not exceed the yield point ~(o) ~< 0, while the plastic strains ~ij 
satisfy the inequality [I-3] 

~ij(~ij - -  aij  ) < 0 V~, @(~) ~ O. (2 )  

The equilibrium equations are satisfied in the domain ~R a 

--o~3,j = Ii, ~ = t, 2, 3. (3 )  

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
I, pp. 174-177, January-February, 1984. Original article submitted November I, 1982. 

160 0021-8944/84/2501-0160508.50 �9 1984 Plenum Publishing Corporation 



On the boundary of the domain F the condition 

= 0 (4) 

is valid. Here fi are given mass forces, and the function ~ describes the flow condition. 
It is assumed that ~ is continuous, convex, and the set K = {~R~I~(~) < 0} contains zero as 
an inner point. The boundary F is considered smooth. All the quantities with two subscripts 

a r e  s y m m e t r i c  ~ =  { ~ } ,  e~i(u) = (t/2)(ui,) + uL~), u =  ( u i , ~ , u a ) , Q ~ L ~ ( ~ ) , ~ =  {~i} , t h e  t e n s o r  e i j k ~  

p o s s e s s e s  t h e  u s u a l  symmet ry  and  p o s i t i v e - d e f i n i t e n e s s  p r o p e r t i e s ;  s u m m a t i o n  i s  a s s u m e d  to  

be  o v e r  r e p e a t e d  s u b s c r i p t s .  A l s o  l e t  K =  {~L~(~) l~(x)  ~ K  a l m o s t  e v e r y w h e r e  i n  ~ } .  The 
f o l l o w  r e s u l t  h o l d s .  

THEOREM. L e t  f ~ Z ~ ( ~ ) ,  ~ =  ~ ,2 ,3  and  l e t  a s o l u t i o n  ~0 of  t h e  s y s t e m  (3)  e x i s t  s u c h  t h a t  
f o r  a c e r t a i n  c o n s t a n t  6 > 0 t h e  i n c l u s i o n  ( l ~ 6 ) o 0 ~ K  w i l l  be  v a l i d .  Then  t h e r e  a r e  f u n c -  
t i o n s  ~ and  u s a t i s f y i n g  (3)  whe re  

( ~ K :  C((~, ~- -o) - ] -  f u i ( '~ iJ , ) - -~iJ j )dx~O V ' ~ K ~ V ,  
f~ 

(~i~,~ ~ Ls  (~)'  u ~ L a/~ (~2). 

(5) 

Here 

C ((~, "l) : ,f cijhl%l'~ijdx' V = {(~ ~ L 2 (Q) I g{j,j ~ La (~) }" 

The i n e q u a l i t y  (5)  i s  t h e  r e l a t i o n s  ( 1 ) ,  ( 2 ) ,  (4)  w r i t t e n  i n  a f o r m  c o r r e s p o n d i n g  t o  t h e  
existing regularity of the solution. 

Proof. The scheme of the discussion is the following. First we examine the auxiliary 
problem with a penalty, and by using reciprocity methods we prove the existence of approxi- 
mate solutions. We then obtain a priori estimates that are uniform in the penalty parameter 

> 0, and we then pass to the limit. 

Let ~ be the projection operator in R 6 with the customary Euclidean norm in the set K. 
We define a functional in the space L2(~) (~ > 0 is fixed) 

(o) = - f  c (~,  ~) + P (~),  P (~) = ~ I 

and the closed convex sets 

A = {~  ~ L 2 ( ~ ) l ~ i i , j  ~ IC ~ = i ,  2 , 3 } ,  A 0 ~ {~  ~ L2(~)l~ii,j ~ 0 ,~  ~ t ,  2 , 3 } .  

U s i n g  t h e  f i r s t  K o r n  i n e q u a l i t y  i n  H ~ ( ~ ) ,  i t  c a n  be  p r o v e d  t h a t  t h e  s e t  

w = { ~ j  I ~ j  ~ L ~ (~ ) ,  ~ j  = ~ j  (~0, ~ = (~, ~, ~) ~ ~ (~)} 

is closed in L2(~). 

Furthermore, let us set 

where <", 
F is weakly semicontinuous from below. 

Let us consider the problem 

inf {G (e) -~ F (e)} = inf f sup [<~, e (u)> -- H (~)] --  </i' ui>~" 
e~LU(fl) uEHIo(.Q) [x~LZ(~) ) 

We p r o v e  t h a t  t h i s  p r o b l e m  has  a s o l u t i o n .  I n d e e d ,  we h a v e  a t  t h e  p o i n t  T = T w he r e  t h e  
e x a c t  u p p e r  bound  i s  r e a c h e d  

<H'(~, o>- <e(u), o> -- 0 u ~ L~(Q). 

L+ oo otherwise, 

(e) = sup  t<~,  e > - / t  (~)}, ~ = { % j } ,  
~L2(~}) 

"> is  the scalar  product in L2(~). Because of the closedness ol W the functional 

(6) 
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Consequently 

~ (u) = % m ~  + ~' (~-~;, ~' (:O~j = (~/~) ( :~-  ~:~)~. (7) 

Here and above the prime denotes the derivatives of the appropriate functionals. We sub- 
stitute the value obtained sij(u) into the square bracket in (6) for ~ = Y. We obtain that 
the value of this bracket equals (I/2)C(~, Y) -- P(~) § <P'(~), z>. However, it follows from 
(7) [c is independent of u, r, ll'[[p is the norm in LP(~)] 

II u ~'o(~ ~<~ (" ~fl~ + I1~' (~) D .  

Moreover, from the convexity of the functional P we obtain that P(~) ~ <P'(~), ~>. There- 
fore, the value of the braces in (6) tends to +~ for ~ull ~(e)-~+~ [we emphasize that e is 

still fixed so that IIP'(?)II2 ~ c]]?I]2]. The coercivity of the functional (6) is set. Hence, 
the existence of the solution ==~Z~H~(Q) follows from the weak semicontinuity from below. 

We now construct the problem conjugate to (6). We have G*(r) = H(Y) and 

F*(--z)= sup [<g, e> -- F (e)} = sup {<T,~(u)>~c<f~,u~>}=*~(~). 
eeL~(ft) u~Hlo(fl) 

Here CA(T) is the display function of the set A, i.e., a function equal to zero in the set A 
and +~ outside. Therefore, the following [4] 

inf {G*(" 0 ~-F* (--g)} = inf H('~) (8 )  

will be a problem reciprocal to (6) relative to the perturbation A(e, q) = G(e) + F(e -- q). 
This problem has a solution which is characterized by the inequality o = o 8 ~ A : <H'(~), ~-- 
c~>>~0VT~A. We here substitute ~= o 8_T0,~0 ~A0 �9 We obtain 

<H'(o~), To> = 0 VT0 ~ A0. (9) 

The identity (9) will play a substantial part in obtaining a priori estimates of the solu- 
tion. 

The solutions c~L2(~) and uS~H~(~) of the conjugate problems (6) and (8) are related 
to the extremal relationships [4] 

G(~(u~)) + G*(~ ~) = <8(~), o'>. 

Substituting the values of G and G*, we find 

H(o 8) -- <sfu~), a~> ~. H(T) -- <8(u~), T> VT ~ LZ(~). 

It hence follows that 

.%j (.u9 = ~o~,zaL + P' (o9~j. ( 1 o) 

We now obtain the a priori estimates of the solutions on the basis of (9) and (I0). We 
substitute as T0 in the identity (9) the quantity o = oe -- ~0, ~0 is the solution of (3). 
We will have 

c ~ ,  -5 ~) + <~,'(~), -5~> = _c(oo, ~ ) .  

Since o ~ ~ K , then <P'(o8),-~8>~ 0 , and this means that from this relationship there follows 

I~"II, < e, <P'(o5, ?> < ~. ( 1 I) 

The constants c are here independent of e. 

Furthermore, it follows from the conditions of the theorem that (I~-8)o~ K Hence, 
there is a constant 60 dependent on 6 and K for which dist(~~ CK) ~> 5o; CK is the sup- 
plement to the set K. We assume that for z ~ e the imbedding ~z(z)= o~(z) ~--~8(z)~ CK is valid. 
Then the hyperplane is {~EReI[~, l(z)] = b} , where b is a certain number while 

Z(z) = P' (o") (z) ]P' (~) (z) I -~ ( 1 2) 

s e p a r a t e s  t h e  s e t s  a t ( x )  and  I~. H e r e  [ ' ,  �9 ] d e n o t e s  t h e  s c a l a r  p r o d u c t  c o r r e s p o n d i n g  t o  t h e  
Euclidean norm. Since o~(x) ~ CK, o~(z) + 50~(z)~K, 0 ~ ~ , then the following inequalities hold: 
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[o~(z) + ~e(x), / ( z ) )>  b, [o~(z) + 80z(z), z(z)l ~< b. 

We h e n c e  o b t a i n  [~(x), l (x ) ]~60 , .  C o n s e q u e n t l y ,  by  m u l t i p l y i n g  (12)  s c a l a r l y  by  ~ ,  we w i l l  h a v e  

l P' (~ (~)1 < 8~ ~ (P' (~9 (~), ~ (~)1. 
This inequality is satisfied also in the case a,(x)~ K . Integrating it over the domain 
and taking account of (I I), we obtain 

with constant c independent of ~. By using this inequality, we obtain [IE(u~)l[1 ~< c from 
(10). It is proved in [5] that if Qc-/~ is a domain with regular boundaries and ~----(~i'~2, 
~3)~H~(~), then there exists a constant c > 0 independent of ~ for which 

8 

Therefore, the estimate 

Ilu~11~/2 ~ e (13) 

with constant independent of e is valid. 

According to (11) and (13), it can be considered that there exists a subsequenee de- 
noted in the previous manner that possesses the property 

o '  -~ a weakly in L~(D), u e ~ u weakly in L~/2Ce ), ( ] 4 )  

We m u l t i p l y  (10)  by  ~ - -o~ ,  �9 ~ g ~ V and  we o b t a i n  

c (~ ,  �9 - ~) + ~ ~ (~j.j  - ~ . ~ )  ~ ~ 0 
fl 

E . . . . .  

T a k i n g  i n t o  a c c o u n t  t h a t  o i j , j  = - - f i  a s  w e l l  a s  t h e  f a c t  t h a t  lin__._!C(oe, oe)~C(o,o), we go o v e r  
8 ~ 0  

h e r e  t o  t h e  l o w e r  l i m i t  a s  c + 0,  on t h e  b a s i s  o f  ( 1 4 ) .  C o n s e q u e n t l y ,  we o b t a i n  t h e  i n e q u a l -  
i t y  ( 5 ) .  The i m b e d d i n g  g ~ K  i s  p r o v e d  by  s t a n d a r d  r e a s o n i n g  [ 1 ] .  The t h e o r e m  i s  p r o v e d  
c o m p l e t e l y .  

The author is grateful to V. M. Sadovskii for discussing the research. 
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