With a known functional relationship between the Xyy and Upg, one has the following
linkage equations between the two-dimensional force and strain tensors:

b

+
le:bJ" (0 ya/01x) X 521 B,Bydlty
by
Zag = j (0U ypg/0tigg) X ypy By Bydty (4.9)
b_
by

fc= | (Unag/0wig) XnasBy Bty
b .

Equations (4.1)-(4.9) form a closed system for the unknown functions uy, vp, Uss, UpM,
WnMs X*NM» ZpM and their first-order partial derivatives. The bending tensor vpy plays an
auxiliary role in this system of abbreviated denotation for ‘differential expression (4.2).

When the tw--dimensional system of (4.1)-(4.9) has been solved, the three-dimensional
parameters of rhe state of stress and strain in the shell are determined from the scheme
presented iu Sec. 3.
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EXISTENCE OF SOLUTIONS IN IDEAL HENCKE PLASTICITY

A. M. Khludnev ' UDC 539.214+539.374+517.9

The existence of a weak solution in the theory of ideal Hencke plasticity is obtained
only in the particular case of the Mises flow condition and under the assumption of isotropy
of the material [1]. The strain vector is here found from a space conjugate to L7(R). The
existence of a solution for an arbitrary flow condition and without the assumption of iso-
tropy is proved in this paper. The displacement vector belongs to the space L3/2().

The governing equations of the plasticity theory under consideration yield a represen-—
tation of the total strains in the form of a sum of elastic and plastic components

&) = CigpiSur + &y 1 1= 1,2,3, (1

where the stresses do not exceed the yield point ¢(c) < 0, while the plastic strains £ij
satisfy the inequality [1-3]

(T — 0,) < 0V, O(1) < 0. (2)
The equilibrium equations are satisfied in the domain Qc R®

—0,;; =1, 1=1,23 (3)
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On the boundary of the domain I' the condition
u=0 (1)

is valid. Here fj are given mass forces, and the function ¢ describes the flow condition.

It is assumed that ¢ is continuous, convex, and the set K = {A = R%|®() < 0} contains zero as
an inner point. The boundary I' is considered smooth. All the quantities with two subscripts
are symmetric o= {0,;}, &;(0) = W2 ; T u55)s uw= (uy, ua us), ¢;5,,; EL(Q), b = {A,;} » the tensor cjjkl
possesses the usual symmetry and positive-definiteness properties; summation is assumed to
be over repeated subscripts. Also let K = {oe< LAQ)jo(s) =« kK almost everywhere in Q}. The
follow result holds.

THEOREM. Let f;=1%®Q), i=1,2,3 and let a solution ¢ of the system (3) exist such that
for a certain constant § > 0 the inclysion (f -+ 8¢°e Xk will be valid. Then there are func-
tions o and u satisfying (3) where

GEK:C@L1—0y+{uMQLF—WMVM>O-VTeKﬂ%
0 (5)
0, L3(Q), veI?2(Q).

Here
C (o, 1)= Y cijklgleijdx’ V= {0’ = L2 (Q)} 045 E L3 (Q) }
Q

The inequality (5) is the relations (1), (2), (4) written in a form corresponding to the
existing regularity of the solution.

Proof. The scheme of the discussion is the following. First we examine the auxiliary
problem with a penalty, and by using reciprocity methods we prove the existence of approxi-
mate solutions. We then obtain a priori estimates that are uniform in the penalty parameter
€ > 0, and we then pass to the limit.

Let 7 be the projection operator in R® with the customary Euclidean norm in the set K.
We define a functional in the space L?(Q) (e > 0 is fixed)

1 1 2
H (o) =5 C(0,0)+ P (o), Plo)=75lo—mncl;
and the closed convex sets

4= {oe= L“‘(Q.)Ic.j’j =f,i=1,2,3}, 4= {o & LYQ)lo

i

g =0, i=1,23),
Using the first Korn inequality in H§(R), it can be proved that the set
W={eijleijEL2 (Q), €= g5; (1), u=_(ug, Uy uy) = H(l) (@)}
is closed in LZ(%).

Furthermore, let us set

F(e) = {_ gy, i ez W, e ={e;;}s

+ o0 otherwise,
Ge)= sup {v,e>—H(1)} v={7;}
TSLHQ)

where <*, *> is the scalar product in L?(Q). Because of the closedness of W the functional
F is weakly semicontinuous from below.

Let us consider the problem

inf {G(e)+F ()= int { s K & (w)y — H (W] — (fp ui>}. (6)

esIXQ) ueH})(n) T=LH D)

We prove that this problem has a solution. Indeed, we have at the point T = T where the
exact upper bound is reached

CH'(T), 0y — <e(u), 0> = 0 yo = L¥Q).
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Consequently
£y (W) = iyt + P @y PRy = (e) (v— m1)is. (7

Here and above the prime denotes the derivatives of the appropriate functionals. We sub-
stitute the value obtained ejj(u) into the square bracket in (6) for T = T. We obtain that
the value of this bracket equals (1/2)C(t, T) — P(1) + <P'(t), T>. However, it follows from
(7) [c is independent of u, T, ||'|lp is the norm in LP(Q)]

fu MH(,)(Q) <c(zl, +1p @1,).

Moreover, from the convexity of the functional P we obtain that P(T) € <P'(1), T>. There-
fore, the value of the braces in (6) tends to += for [u| l(m—a--l—oo [we emphasize that € is
Hy

still fixed so that IP'(T)l, < clhtl,]. The coercivity of the functional (6) is set. Hence,
the existence of the solution uw=u*e Hj(Q) ' follows from the weak semicontinuity from below.
We now construct the problem conjugate to (6). We have G*(1r) = H(T) and

Fr(—7)= sup (un, ) —F(}= sup [T, @)+ {fpud}=1v, ).
esL¥Q) usHNQ)

Here Pp (1) is the display function of the set A, i.e., a function equal ro zero in the set A
and +» outside. Therefore, the following [4]

inf {G*(tv) -F*(—7)}=inf H(x) (8)
teL¥Q) TEA

will be a problem reciprocal to (6) relative to the perturbation A(e, q) = G(e) + F(e — q).
This problem has a solution which is characterized by the inequality c=o¢*=4 :<H (¢%, 1 —
0> >0Vr=A4. We here substitute 1=0¢°+7, <4, . We obtain

{H'(6%), Top =0 ¥T1, = 4,. (9)

The identity (9) will play a substantial part in obtaining a priori estimates of the solu-
tion.

The solutions ¢®*e L¥Q) and w¥*e Hy(Q) of the conjugate problems (6) and (8) are related
to the extremal relationships [4]

G(e(w?) + @*(0°) = Ce(), 0%
Substituting the values of G and G*, we find
H(c®) —<e(u®), o) < H(x) —{e(u®), v Vi & LAQ).

It hence follows that

N

'sij (uE) = Cijklo'gl + P’ (Ga)ij. ( 1 0)

We now obtain the a priori estimates of the solutions on the basis of (9) and (10). We
substitute as To in the identity (9) the quantity ¢ = o8 — ¢%, ¢ is the solution of (3).
We will have

Cle®, o) + <P'(69), 6% = —C(o*, o).
Since o= K , then <P'(0®,¢% >0, and this means that from this relationship there follows
11011z < ¢, <P'(0"), 0% < e (11

The constants ¢ are here independent of €.

Furthermore, it follows from the conditions of the theorem that (1-+8)¢®e= K . Hence,
there is a constant 8¢ dependent on ¢ and K for which dist(o%(x), CK) > 8¢; CK is the sup-
plement to the set K. We assume that for zeQ the imbedding o) = o%@z) + o¢(z) = CE 1is valid.
Then the hyperplane is {&= RY[§, I(z)] = b} , where b is a certain number while

Uz) = P'(0°)(z)|P'(0%)(s) | (12)

separates the sets o%(x) and K. Here [+, *] denotes the scalar product corresponding to the
Euclidean norm. Since o*z) = CK, o%=z)+ Sl(z)=K, 0 = K , then the following inequalities hold:
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[0%=z) + ¢*(®), Uz)1 > b, [0%) + Bolfx), Ua)l <

We hence obtain ([¢%g), l(z)] > 8. . Consequently, by multiplying (12) scalarly by o€, we will have

| P (0®) (=) | < 8,72 [P (6%) () 0° ().

This inequality is satisfied also in the case o¢*(x)= X . Integrating it over the domain §
and taking account of (11), we obtain

Pl << e

with constant c independent of €. By using this inequality, we obtain le(u®)l; < ¢ from
(10). It is proved in [5] that if QCBA* is a domain with regular boundaries and ¢= =(P; Py
<%)esﬂlun , then there exists a constant ¢ > 0 independent of ¢ for which

"q)";;/z\c 2 " 823 (‘P) "1

=1
Therefore, the estimate
Hu®llgy < ¢ (13)
with constant independent of & is walid.

According to (11) and (13), it can be considered that there exists a subsequence de-
noted in the previous manner that possesses the property

¢® — ¢ weakly in L2(Q), ¥® — u weakly in L3/2(£2) (14)

We multiply (10) by =,; —of ,rezK N 14 and we obtain

il

c (0", T—0%) 4 S. (55— 0%3,;)de =0
2

. . E S
Taking into account that 0ij,j < —£; as well as the fact that Eﬂlc(cﬂ(ﬁ);ac(o,w , We go over
&0

here to the lower limit as € - 0, on the basis of (14). Consequently, we obtain the inequal-
ity (5). The imbedding o= K 1is proved by standard reasoning [1]. The theorem is proved
completely.

The author is grateful to V. M. Sadovskii for discussing the research.
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